Mathematical Sciences Colloquium Series

Dr. Dungang Liu University of Cincinnati

 In person at Bell Hall 130 and online via Zoom Click on this announcement to access the Zoom link
Friday, November 11 (3) 3pm

Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing

Abstract

Partial association refers to the relationship between variables Y_1, Y_2, \dots, Y_K while adjusting for a set of covariates $X = \{X_1, \dots, X_p\}$. To assess such an association when Y_K 's are recorded on ordinal scales, a classical approach is to use partial correlation between the latent continuous variables. This so-called polychoric correlation is inadequate, as it requires multivariate normality and it only reflects a linear association. We propose a new framework for studying ordinal-ordinal partial association by using surrogate residuals (Liu and Zhang, JASA, 2018). We justify that conditional on X, Y_K and Y_1 are independent if and only if their corresponding surrogate residual variables are independent. Based on this result, we develop a general measure ϕ to quantify association strength. As opposed to polychoric correlation, ϕ does not rely on normality or models with the probit link, but instead it broadly applies to models with any link functions. It can capture a non-linear or even non-monotonic association. Moreover, the measure ϕ gives rise to a general procedure for testing the hypothesis of partial independence. Our framework also permits visualization tools, such as partial regression plots and 3-D P-P plots, to examine the association structure, which is otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures, p-values, and graphics) is developed within a single unified framework, which allows a coherent inference. The analyses of the National Election Study (K = 5) and Big Five Personality Traits (K = 50) demonstrate that our framework leads to a much fuller assessment of partial association and yields deeper insights for domain researchers. This talk is based on a published article (JASA, 2021, 116, 955-968) and a paper submitted to the Annals of Applied Statistics

For further information, please contact Dr. Emil Schwab, eschwab@utep.edu